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We have investigated techniques for distinguishing between drugs and nondrugs using a set
of molecular descriptors derived from semiempirical molecular orbital (AM1) calculations. The
“drug” data set of 2105 compounds was derived from the World Drug Index (WDI) using a
procedure designed to select real drugs. The “nondrug” data set was the Maybridge database.
We have first investigated the dimensionality of physical properties space based on a set of 26
descriptors that we have used successfully to build absorption, distribution, metabolism, and
excretion-related quantitative structure-property relationship models. We discuss the general
nature of the descriptors for physical property space and the ability of these descriptors to
distinguish between drugs and nondrugs. The third most significant principal component of
this set of descriptors serves as a useful numerical index of drug-likeness, but no others are
able to distinguish between drugs and nondrugs. We have therefore extended our set of
descriptors to a total of 66 and have used recursive partitioning to identify the descriptors
that can distinguish between drugs and nondrugs. This procedure pointed to two of the
descriptors that play an important role in the principal component found above and one more
from the set of 40 extra descriptors. These three descriptors were then used to train a Kohonen
artificial neural net for the entire Maybridge data set. Projecting the drug database onto the
map obtained resulted in a clear distinction not only between drugs and nondrugs but also, for
instance, between hormones and other drugs. Projection of 42 131 compounds from the WDI
onto the Kohonen map also revealed pronounced clustering in the regions of the map assigned
as druglike.

Introduction

Recently, the emphasis in computational drug design
has been extended from the traditional quantitative
structure-activity relationship (QSAR) techniques used
to find biologically active molecules to more quantitative
structure-property relationship (QSPR)-oriented esti-
mates of the absorption, distribution, metabolism, and
excretion (ADME) properties of molecules. As part of
this shift in emphasis, several groups have attempted
to define the “drug-likeness” of molecules following the
pioneering “rule of five” work by Lipinski.1 The most
common approach to this problem has been to use some
type of molecular descriptors linked with a pattern
recognition or interpolation technique, such as neural
nets, to distinguish between a data set of drugs and one
of nondrugs.2-4 The problem often encountered is that
the data sets are not orthogonal. There is no “nondrug”
database. The failed molecules, those shown not to be
drugs, are often not recorded or catalogued, and even
so, there must be a significant proportion of molecules
in a nondrug database that would make good drugs if
they were biologically active. The only solution to this
problem so far has been to assume that the number of
drugs in a generic database is very small. Furthermore,

the World Drug Index (WDI), a database often used as
the “drug set”, contains many chemicals that are not
fully developed drugs. These may not have the required
ADME properties necessary to be a drug. This problem
was, however, addressed by Lipinski,1 who used strin-
gent selection criteria for his drug data set.

We now report a systematic investigation of possible
approaches for distinguishing drugs from nondrugs. We
have used the quantum mechanically derived descrip-
tors that we have shown to be very successful in
describing physical and partition properties of mol-
ecules5 directly, rather than using the physical proper-
ties themselves. We have also investigated three dif-
ferent discrimination techniques.

Materials and Methods

Drugs Data Set. A drugs data set was selected from the
WDI6 as follows. The WDI 1997 contains 51 596 compounds.
Of these, 7570 have been assigned a United States Adopted
Name (USAN)7 and 6307 have been assigned an International
Nonproprietary Name (INN).8 Combining these gives 8323
unique compounds, of which 3515 have an entry in the
“Indication and Usage” (IU) field. Compounds with entries in
the PT (activity) field were then excluded as follows: repellent,
surfactant, sweetener, food-additive, radio protective, solubi-
lizer, lubricant, synergistic, tonic, topical, skin, dermatological,
vulneraries, flavor, insecticide, antiseptic, vitamin, chelator,
cytostatic, emmollier, preservative, anaesthetic, diagnostic,
dietary supplement, radiopaque, dye, emulsifier, laxative,
radiosensitizer, rodenticide, solvent. Finally, 263 charged
moieties were removed (because our treatment is at the
moment not appropriate for charged moieties) and the remain-
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ing 2105 compounds were used as the “oral drug” data set.
This procedure is slightly more extensive than the similar one
used by Lipinski1 but should give a very well-defined drug data
set.

Nondrug Data Set. We also require a nondrug data set
that is ideally orthogonal to the drug data set. It is commonly
assumed that general chemical databases such as Maybridge9

contain no drugs, although this is clearly not correct. We have,
however, used the Maybridge database in its entirety and have
assumed that it contains a significant proportion of compounds
that would be suitable as orally available drugs. In our final
approach, this data set plays the role of representing com-
pounds in general (that is, chemical space) in order to set up
a map in which drugs are localized in one or more areas. This
approach is not unlike the “chemical GPS” technique used by
Oprea et al.10

Processing Protocol. The compounds from the two data
sets were converted from two-dimensional (2D) to single
conformation three-dimensional (3D) structures using CO-
RINA,11 and these structures were used as starting geometries
for AM112 geometry optimizations using VAMP 7.0.13 This
procedure corresponds exactly to that used earlier to optimize
the structures of the Maybridge database.14 The molecular
electrostatics were stored using the natural atomic orbital-
point charge (NAO-PC)15,16 model, and these data were used
to generate the descriptors with PROPGEN 1.0.17

Results and Discussion
Physical Properties and Descriptors. Lipinksi1

has pointed out that the physical property space rel-
evant to ADME property prediction is low-dimensional
in comparison to, for instance, the descriptor space
needed to estimate biological activity. Furthermore,
extensive work by Murray and Politzer18,19 has shown
that descriptors based on the electrostatic properties at
the surface of the molecule provide a good description
of physical properties. We20-24 have used such descrip-
tors in conjunction with semiempirical (AM112 and
PM325) molecular orbital (MO) theory to develop a series
of QSPR models for physical properties such as the
logarithm of the octanol/water partition coefficient,
logP,20 the vapor pressure at 25° and at various tem-
peratures,21,22 the normal boiling point,23 and aqueous
solubility at 20 and 25°.24 Although these models were
developed independently of each other, a common subset
of 14 descriptors appears in at least two of the models,
as shown in Table 1.

We suggest that these descriptors provide a good
description of physical property space, so that they and

others that are similar can be used directly in defining
drug fitness, rather than using measured physical
properties directly or by using QSPR estimates of
physical properties. The dimensionality of the informa-
tion contained in our full set of 26 descriptors routinely
used to build QSPR models can be tested by calculating
their principal components (PCs)26 for a database of
general chemicals, such as the Maybridge database
processed previously.14 In this case, the fact that May-
bridge contains a subset of molecules that would make
good drugs is actually an advantage in investigating the
dimensionality of physical property space.

Our Maybridge single conformation data set contains
52 712 structures calculated with AM1 semiempirical
MO theory12 for which the descriptors given in Table 1
have been calculated. In addition to the 14 descriptors
shown in Table 1, a further 12 related descriptors that
we have used more recently than the published work
were calculated to give a total of 26. These descriptors
are defined in Table 2.

We have shown that the inclusion of correlated
descriptors can be important in property prediction with
neural nets.20 This is because there is valuable informa-
tion in the way these descriptors are not correlated.

Table 3 shows relatively few strong correlations.
Interestingly, the molecular electronic polarizability,
which we can now calculate accurately using the
parametrized variational treatment29,30 and which ap-
pears as a major descriptor in all of our current QSPR
models, correlates very strongly with both the dipolar
density27 and the “size” descriptors molecular weight
and volume. The other very strong correlation occurs
between the molecular weight and the volume, suggest-
ing that there is some redundancy in the size descrip-
tors. The “electrostatic” descriptors are, however, pleas-
ingly uncorrelated, suggesting that they provide a
diverse description of the molecular electrostatic proper-
ties and, hence, to a large extent of the intermolecular
interactions.

The total variance explained by the PCs calculated
for these 26 descriptors is plotted against the number
of PCs in Figure 1. About 90% of the variance is
explained by the first 12 PCs, confirming the relatively
low dimensionality of at least the space defined by these
descriptors and by inference of physical property space.

Table 1. Frequently Occurring Descriptors in QSPR Modelsa

descriptor logP
boiling
point

aqueous
solubility

vapor
pressure

vapor pressure
(T-dependent)

ref 18, 19 21 22 19 20
molecular polarizability (R) X X X X X
molecular surface area X X X X
globularity X X X
mean positive MEP X X X X X
mean negative MEP X X X X
total variance (σtot

2) X X X
balance parameter (ν) X X X
positive variance (σ+

2) X X X
negative variance (σ-

2) X X
molecular weight X X X X
sum of MEP-derived

charges on nitrogens
X X X X

sum of MEP-derived
charges on oxygens

X X X X

sum of MEP-derived
charges on phosphorus

X

sum of MEP-derived
charges on sulfur

X X

a Boxes marked with an X indicate that the descriptor is used in the given model. Those that are blank indicate that we would expect
the descriptor to be used if the training data set contained larger numbers of phosphorus or sulfur compounds.
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Figure 2 shows a plot of the Eigenvalues of the PCs26

against the number of the PC. Two tests have been
proposed to determine the number of significant PCs
for a given set of descriptors and data. The first, the
Kaiser-Guttmann criterion,38 is simply that all PCs
with an Eigenvalue larger than one are significant. This
test suggests that the first eight PCs are significant.
The Scree test39 proposes that Eigenvalue plots such as
Figure 2 should show a kink between the significant
and the less significant PCs. Figure 2 shows two such
kinks, one at PC number five and one at seven. As the
latter agrees relatively well with the Kaiser-Guttmann
criterion, we conclude that the space described by our
26 descriptors for the Maybridge database is 7-8-
dimensional. Our experience with QSPR models sug-
gests that we can extrapolate this conclusion to give a
rough idea of the dimensionality of physical property
space in the context of ADME properties. What, how-
ever, is the nature of the PCs?

Nature of the PCs. The PCs26 of the 26 descriptors
calculated for the Maybridge database were calculated.
The coefficients of the first nine PCs are shown in Table
4.

The first PC, which explains 23% of the total variance,
consists mainly of the size descriptors such as the
polarizability, molecular weight, volume, surface, and
globularity. We interpret this factor as describing
primarily the size and shape of the molecule.

The second PC, in contrast, consists almost entirely
of the “Murray/Politzer” descriptors maximum and

mean positive and negative electrostatic potentials, the
total variance, σtot

2, and the product of the balance
parameter and the total variance, σ2‚ν. This PC, which
accounts for 18% of the total variance, constitutes a
general electrostatic description of the positive areas of
the molecule.

The third PC consists of the total charge on fluorines,
the minimum of the molecular electrostatic potential,
the mean negative electrostatic potential, and the bal-
ance parameter, ν. The occurrence of the total charge
on fluorines in this descriptor is a little puzzling, espec-
ially as it does not correlate with any of the others, but
otherwise, this factor can be interpreted as the equiva-
lent of PC2 for negative areas of the electrostatic po-
tential. We have therefore labeled PC2 and PC3 “MEP+”
and “MEP-” and suggest that the two together describe
the surface electrostatics of the molecule quite effec-
tively. Omitting the fluorine charge descriptor from the
descriptors and recalculating the PCs result in an in-
crease of the coefficients for the minimum MEP (to
-0.475) and the sums of charges on hydrogens and
nitrogens (to 0.341 and -0.254, respectively) but to a
slight decrease in that for the balance parameter (to
-0.438).

PC number four, which accounts for 8% of the
variance, has strong contributions from the total charges
on nitrogen and the H bond donor count. These two
descriptors are relatively strongly negatively correlated
and have opposite signs in the PC, so that we can

Table 2. List of All Available Descriptorsa

no. acronym description ADME 26 FIRM 3 ref no. acronym description ADME 26 FIRM 3 ref

1 µ total molecular dipole moment X Sum of E-States Based on QM-Calculated Bond Orders
2 dipden dipolar density X 27 40 EstateN N atoms 35
3 R total polarizability (original variational) 28 41 EstateO O atoms 35
4 m0pol total polarizability (parametrized model 0) X 29 42 EstateP P atoms 35
5 m2pol total polarizability (parametrized model 2) 30 43 EstateS S atoms 35

Sums of the Electrostatic Potential-Derived Atomic Charges on
44 Estatehal halogen atoms 35

6 QsumH H atoms X X 31
45 EstateF F atoms 35

7 QsumN N atoms X 31
46 EstateCl Cl atoms 35

8 QsumO O atoms X 31
47 EstateBr Br atoms 35

9 QsumP P atoms X 31
48 EstateI I atoms 35

10 QsumS S atoms X 31 Sum of E-States Based on QM-Calculated Distance on
11 Qsumhal halogen atoms 31 49 Estate2N N atoms 35
12 QsumF F atoms X 31 50 Estate2O O atoms 35
13 QsumCl Cl atoms X 31 51 Estate2P P atoms 35
14 QsumBr Br atoms X 31 52 Estate2S S atoms 35
15 QsumI I atoms X 31 53 Estate2hal halogen atoms 35

16 npos no. of triangles on the surface with a + MEP 18, 19
54 Estate2F F atoms 35

17 nneg no. of triangles on the surface with a - MEP 18, 19
55 Estate2Cl Cl atoms 35

18 ESPmax max MEP X 18, 19
56 Estate2Br Br atoms 35

19 ESPmin min MEP X X 18, 19
57 Estate2I I atoms 35

20 midpos mean + MEP X 18, 19
Sum of Classical Kier and Hall E-States on21 midneg mean - MEP X

18, 19 58 EstateorgN N atoms 3622 allmeanesp total mean MEP
18, 19 59 EstateorgO O atoms 3623 midpos2 midpos2

18, 19 60 EstateorgP P atoms 3624 midneg2 midneg2

18, 19 61 EstateorgS S atoms 3625 σ2
tot total variance of the MEP X

18, 19 62 Estateorghal halogen atoms 3626 ν balance param X
18, 19 63 EstateorgF F atoms 3627 σ2

tot × ν total variance * balance X
18, 19 64 EstateorgCl Cl atoms 3628 locpol local polarity
18, 19 65 EstateorgBr Br atoms 3629 covHBac covalent H bond acidity X
32 66 EstateorgI I atoms 3630 covHBbas covalent H bond basicity
3231 esHBac electrostatic H bond acidity
3232 esHBbas electrostatic H bond basicity
3233 nAcc no. of H bond acceptor groups X

34 nDon no. of H bond donor groups X
35 nAryl no. of aryl groups X
36 MW mol wt X
37 Vol molecular volume X 33
38 Totsurface total molecular surface area X 33
39 Glob globularity X 34

a The descriptors contained in the original 26 descriptor ADME set are marked under “ADME 26”, and those selected by the FIRM
analysis and used in the Kohonen net are marked under “FIRM 3”.
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interpret this factor as describing the H bond donor
ability of the molecule.

Although PC4 consists of contributions from five
different descriptors, they are all related to H bond
acceptor properties, so that this factor can be interpreted
as being the hydrogen bond acceptor equivalent of the
hydrogen bond donor PC number 5.

PC6, which explains about 5% of the total variance,
consists of large contributions from the “dipole” descrip-
tors (dipole moment and dipolar density) and from
the total charge on sulfurs. As with the fluorine descrip-
tor in PC3, the contribution from the total charge on
sulfurs is difficult to explain, but otherwise, this de-
scriptor can be interpreted as a simple dipolar (polarity)
factor.

Table 3. Correlation Matrix Obtained for the 26 Descriptors Calculated for the Maybridge Databasea

Section 1

descriptor acronym m dipden m0pol QsumH QsumN QsumO QsumP QsumS QsumF QsumCl QsumBr QsumI ESPmax ESPmin

total dipole µ 1.00
total dipole/volume Dipden 0.79 1.00
mean polarizability m0pol 0.15 -0.37 1.00
total H charges QsumH 0.04 -0.24 0.48 1.00
total N charges QsumN 0.06 0.13 -0.14 -0.25 1.00
total O charges QsumO -0.25 -0.05 -0.25 -0.21 -0.22 1.00
total P charges QsumP 0.04 0.01 0.06 0.06 0.02 -0.09 1.00
total S charges QsumS 0.21 0.08 0.14 0.00 -0.05 -0.62 -0.06 1.00
total F charges QsumF -0.09 0.02 -0.05 0.09 0.06 -0.02 0.01 -0.06 1.00
total Cl charges QsumCl -0.03 -0.12 0.19 -0.21 -0.07 0.03 -0.01 0.02 0.05 1.00
total Br charges QsumBr -0.03 -0.02 0.00 -0.13 0.06 0.04 0.00 -0.02 0.04 -0.05 1.00
total I charges QsumI -0.03 -0.01 0.01 -0.09 0.02 0.01 0.00 0.00 0.02 -0.02 -0.01 1.00
max MEP ESPmax 0.34 0.27 0.04 0.00 -0.12 -0.44 0.16 0.56 -0.20 0.00 0.00 0.00 1.00
min MEP ESPmin -0.13 -0.06 -0.17 -0.18 0.34 -0.05 -0.24 -0.13 -0.17 0.03 0.01 -0.06 -0.10 1.00
mean + MEP midpos 0.42 0.50 -0.24 -0.18 0.02 -0.26 0.05 0.23 -0.21 -0.04 0.06 0.00 0.67 0.14
Mean - MEP midneg -0.37 -0.49 0.19 -0.03 0.00 0.41 -0.08 -0.29 -0.30 0.17 0.01 0.00 -0.30 0.36
total variance σtot

2 0.42 0.46 -0.11 0.05 -0.17 -0.37 0.24 0.49 0.15 -0.10 0.00 0.01 0.59 -0.52
balance param ν 0.11 0.14 -0.06 -0.17 -0.05 -0.04 -0.10 0.01 -0.37 0.08 -0.01 -0.02 0.52 0.27
variance * balance σtot

2 × ν 0.37 0.43 -0.12 -0.07 -0.17 -0.31 0.06 0.39 -0.09 -0.03 -0.01 0.00 0.78 -0.22
no. of acceptor

dipoles
NAcc 0.13 -0.08 0.35 0.26 -0.22 -0.34 -0.02 -0.14 0.01 -0.05 0.05 -0.01 0.10 -0.06

no. of donor
dipoles

NDon 0.00 0.02 -0.06 0.41 -0.48 -0.02 -0.02 -0.07 0.01 -0.02 -0.04 0.00 0.26 -0.13

no. of aryl rings NAryl 0.10 -0.22 0.66 0.02 -0.14 0.02 0.02 0.09 -0.11 0.14 -0.01 -0.01 0.04 -0.07
mol wt MW 0.22 -0.29 0.90 0.33 -0.12 -0.38 0.06 0.25 -0.32 0.26 0.13 0.09 0.24 -0.07
volume Vol 0.19 -0.35 0.96 0.57 -0.12 -0.35 0.08 0.17 -0.17 0.15 -0.03 -0.02 0.10 -0.11
total surface Totsurface 0.19 -0.34 0.95 0.55 -0.15 -0.34 0.07 0.16 -0.19 0.15 -0.03 -0.02 0.11 -0.11
globularity Glob -0.19 0.32 -0.87 -0.44 0.21 0.28 -0.03 -0.12 0.22 -0.15 0.05 0.03 -0.14 0.12

Section 2

descriptor acronym midpos modneg σtot
2 ν σtot

2 × ν nAcc nDon nAryl MW Vol Totsurface Glob

mean + MEP midpos 1.00
mean - MEP midneg -0.32 1.00
total variance σtot

2 0.44 -0.71 1.00
balance param ν 0.44 0.10 -0.05 1.00
variance * balance σtot

2 × ν 0.60 -0.48 0.70 0.62 1.00
no. of acceptor

dipoles
NAcc 0.15 -0.21 0.05 0.13 0.14 1.00

no. of donor
dipoles

NDon 0.17 -0.14 0.20 0.32 0.37 0.21 1.00

no. of aryl rings NAryl -0.07 0.26 -0.17 0.08 -0.08 0.20 -0.13 1.00
mol wt MW 0.03 0.17 -0.05 0.11 0.03 0.42 -0.04 0.60 1.00
volume Vol -0.13 0.18 -0.08 -0.06 -0.11 0.38 -0.04 0.56 0.92 1.00
total surface Totsurface -0.12 0.18 -0.08 -0.03 -0.09 0.41 -0.02 0.57 0.93 0.99 1.00
globularity Glob 0.08 -0.19 0.08 -0.05 0.03 -0.45 0.00 -0.59 -0.86 -0.89 -0.93 1.00

a Positive and negative correlation coefficients greater than or equal to 0.5 are shown in boldface.

Figure 1. Total variance explained by the PCs of the 26
descriptors calculated for the Maybridge database.

Figure 2. Eigenvalues of the PCs of the 26 descriptors
calculated for the Maybridge database.
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The remaining three PCs shown in Table 4 are
dominated by the sums of potential-derived charges on
different elements and thus can probably be interpreted
as describing the chemical diversity of the compounds.
PC7 is dominated by bromine and iodine, PC8 is
dominated by oxygen, fluorine, and chlorine, and PC9
is dominated by iodine.

The above results provide a pleasingly consistent
picture of the factors describing physical properties.
These are, in order of descending importance, the size
and shape of the molecule, its electrostatic properties
summarized in two complementary descriptors, the
hydrogen bond donor and acceptor properties, the
dipolar polarity, and a series of descriptors describing
the chemical constitution.

Can the Individual Descriptors Discriminate
between Drugs and Nondrugs? We first plotted
histograms (shown in the Supporting Information) of
the percentage frequencies of the individual PCs and
compared them for the Maybridge and drug data sets.
Such histogram comparisons should reveal the extent
to which the PCs can discriminate between drugs and
nondrugs. The results are disappointing for all but one
PC. PCs 5-8 show little discrimination because they
describe relatively little variance. Of the four most
significant PCs, PC3 (MEP-) is the only one that can
discriminate between the drugs and the nondrugs. A
70.6% amount of the drugs have a value higher than
1.15 and only 21.6% of the nondrugs, as shown in Figure
3. Thus, this single factor can distinguish between drugs
and nondrugs as well as many published procedures.
It is remarkable that this ability to discriminate is only
found for one of the PCs calculated. It is also important

to note that the similarity found for PC1 between the
two data sets rules out a simple size discrimination
between drugs and nondrugs between our two data sets.
On the basis of these results, we can propose a numer-
ical index of drug-likeness, ∆, defined by:

which would give positive values for most drugs and
negative values for most nondrugs.

Why should PC3 be able to distinguish between drugs
and nondrugs? Superficially, PC2 and PC3 form a
complementary set of electrostatic surface descriptors

Table 4. Nine Most Significant PCs of the 26 Descriptors for the Maybridge Databasea

descriptor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

dipole moment -0.0629 -0.2777 -0.0130 -0.2250 -0.1288 -0.4941 -0.1672 0.0834 -0.0442
dipolar density 0.1569 -0.2783 -0.0186 -0.1734 -0.1244 -0.4621 -0.1216 0.0864 -0.0387
polarizability -0.3880 0.0448 0.0528 -0.0620 -0.0710 -0.0355 0.0144 0.0439 0.0011

Sums of the Potential Derived Charges on
H -0.2114 -0.0013 0.2837 0.2392 0.3416 -0.0785 -0.2390 -0.1017 -0.0131
N 0.0881 0.0530 -0.1263 0.5018 0.2597 -0.0408 0.0334 -0.1274 0.0271
O 0.1443 0.2353 -0.0507 0.2575 -0.4222 -0.2452 -0.0338 -0.0516 -0.0154
P -0.0295 -0.0626 0.1507 -0.0395 -0.2080 0.0526 0.0032 -0.6601 0.2312
S -0.0815 -0.2428 0.0246 -0.2338 0.0139 0.4947 -0.1613 0.1314 -0.0516
F 0.0812 0.0295 0.3908 -0.0676 0.0536 0.0245 0.2684 0.3675 0.1342
Cl -0.0725 0.0427 -0.1323 -0.0264 -0.3608 0.1822 0.0940 0.4915 0.2282
Br 0.0071 0.0037 -0.0376 -0.0640 -0.0196 -0.0162 0.7007 -0.2220 0.2612
I 0.0034 0.0001 0.0069 -0.0315 -0.1054 0.0806 0.3053 -0.0697 -0.8909
max MEP -0.0636 -0.3740 -0.1726 0.0561 -0.0250 0.2358 -0.0209 -0.1113 0.0356
min MEP 0.0560 0.1188 -0.4189 -0.1134 0.4081 -0.0311 -0.0235 0.0966 0.0431
mean + MEP 0.0460 -0.3280 -0.2571 -0.0029 0.0456 -0.1054 0.0861 -0.0684 0.0269
mean - MEP -0.0764 0.3080 -0.3062 0.0921 -0.1095 0.0812 -0.1317 -0.1355 -0.0020
variance

(σtot
2)

0.0297 -0.3774 0.2627 -0.0276 -0.1380 0.1052 0.0024 -0.0433 0.0181

balance param
(ν)

-0.0077 -0.1715 -0.4740 0.2571 0.0290 0.0056 0.0429 0.0103 0.0202

σtot
2 × ν 0.0190 -0.3988 -0.1071 0.1596 -0.0646 0.0941 0.0460 0.0228 0.0187

no. of H bond
acceptors

-0.1879 -0.0891 0.0381 0.1592 0.2820 -0.2757 0.3900 0.1076 0.0185

no. of H bond
donors

-0.0120 -0.1411 0.0510 0.5623 0.1421 -0.0122 -0.0004 0.0715 -0.0078

no. of aromatic
rings

-0.2593 0.0525 -0.1194 -0.0581 -0.3189 -0.0679 0.0480 0.0676 0.0179

mol wt -0.3833 -0.0371 -0.1093 -0.0767 -0.0565 0.0184 0.1275 -0.0277 -0.0388
mol volume -0.3963 0.0147 0.0318 -0.0634 0.0381 -0.0362 -0.0575 -0.0272 0.0009
total surface area -0.4001 0.0100 0.0150 -0.0432 0.0281 -0.0492 -0.0495 -0.0192 -0.0013
globularity 0.3808 0.0003 0.0301 -0.0074 0.0168 0.0771 0.0232 -0.0119 0.0023
Eigenvalue 6.0581 4.8052 2.3689 1.9850 1.4139 1.4065 1.1263 1.0803 1.0076
% variance

explained
23.30 18.48 9.11 7.63 5.44 5.41 4.33 4.15 3.88

total % variance
explained

23.30 41.78 50.89 58.53 63.97 69.38 73.71 77.86 81.74

qualitative
description

size, shape MEP + MEP - H bond donor H bond acceptor dipolar (polarity) Br O, F, Cl I

a Coefficients larger than 0.3 are shown in boldface.

Figure 3. Frequency histogram for PC number 3 (MEP-) for
drugs and nondrugs.

∆ ) PC3 - 1.15 (1)
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that together describe the electrostatic binding charac-
teristic electrostatics of the surface of the molecule. Our
interpretation of PC2 and PC3 is that the former de-
scribes the total polarity of the molecular surface, as
evidenced by the importance of the total variance, σtot

2,
and both the mean positive and the mean negative
MEPs (with opposite signs, indicating that the MEP
range is important). However, in PC3, the balance para-
meter, ν, plays the most important role, indicating that
the juxtaposition of positive and negative binding areas
is important. The large coefficient of the minimum MEP
descriptor in PC3 and the maximum MEP in PC2 may
indicate some emphasis on opposite polarities for these
two PCs, so that the acronyms MEP+ and MEP-, res-
pectively, seem appropriate. For a more complete dis-
cussion of the meanings and purposes of MEP surface
descriptors, see Murray and Politzer.18,19

Generally, however, we can conclude that, perhaps
surprisingly, all other descriptors that have been found
to be very well-suited for QSPR models of ADME-related
properties do not do a very good job of distinguishing
between our two data sets. We have therefore extended
our descriptor set to the entire 66 calculated routinely
by our software17 in the hope that we can introduce
more ability to recognize drugs. To develop a further
calculational technique for recognizing drugs, we have
first used recursive partitioning40 to partition the drugs
and nondrugs on the basis of the 66 descriptors. We
have not, however, used this technique for discrimina-
tion because the Maybridge data set does not only con-
tain nondrugs. Instead, we have used recursive parti-
tioning to select suitable descriptors for an unsupervised
learning (Kohonen net) approach in which the decision
as to whether a Maybridge molecule would be a suitable
drug or not is never made. We have used this approach
previously to select descriptors for training back-
propagation neural nets for physical23 and spectro-
scopic41 properties.

Recursive Partitioning. We have used the Formal
Inference-based Recursive Modeling (FIRM) algorithm42

to partition the drugs and nondrugs on the basis of our
total set of 66 descriptors. FIRM partitions the data set
recursively on the basis of the descriptors used. The first
step is to partition the data set for each available
descriptor into a maximum of 20 categories for ordinal
data types and 10 categories for real data types.
Grouping together similar adjacent categories reduces
the number of these categories. The similarity is cal-
culated using Student’s t distribution for ordinal values
and the ø2 distribution for real values. For each descrip-
tor, a probability value is calculated using Pearson’s test
or the F test. The data set is then split using the most
significant descriptor. This is repeated until a user-
supplied threshold is reached.

Using the FIRM software with the standard param-
eters suggested by the documentation resulted in three
descriptors being used to partition the data: the sum
of the potential-derived charges on hydrogens (QsumH),
the minimum electrostatic potential (ESPmin), and the
covalent hydrogen bond acidity32 (covHBac) (see Table
2). Note that QsumH and ESPmin are both represented
quite strongly (coefficients of 0.28 and 0.42, respectively)
in the MEP- factor discussed above as being able to
distinguish between drugs and nondrugs. The covHBac

descriptor, which was not included in the original 26
descriptors and was introduced by Cronce et al.,32 is
defined as the difference in the orbital energy of the
lowest unoccupied orbital (ELUMO) of the molecule in
question and that of the highest occupied orbital (EHO-

MO) of water (-12.464 eV at AM1). ESPmin can be
interpreted as being related to the strength of the
strongest H bond acceptor.

To judge the ability of the FIRM analysis to discrimi-
nate using the three descriptors, we first normalized the
results in order to take the differences in the numbers
of compounds in the data sets into account. After this
normalization, 77.4% of all drugs are found in end-nodes
with a relative majority of drugs and 80.2% of all
nondrugs are found in end-nodes with a relative major-
ity of nondrugs. Thus, the three descriptors seem well-
suited for a nonlinear mapping technique that should
cluster the drugs.

Artificial Neural Networks. We and others have
previously used supervised learning for the back-
propagation training technique used to set up our QSPR
models.20-24 Gasteiger and Zupan43 have pioneered the
use of unsupervised learning in the form of Kohonen
nets44 in chemistry and have demonstrated that they
can be remarkably predictive in a variety of applica-
tions. Kohonen nets are also often known as self-
organizing maps (SOMs), and this description best
describes our intention in applying them to this prob-
lem. The unsupervised learning process removes the
need for a nondrug data set. However, we need to select
descriptors for the mapping that can achieve our goal;
otherwise, we cannot expect the neural network to
cluster drugs away from nondrugs. However, the FIRM-
based selection procedure outlined above should provide
us with the best descriptors for our purpose.

A Kohonen net with a 2D organization of the network
nodes (neurons) was used. To prevent any border effects,
the neurons were organized toroidally, so that every
neuron is equivalent to the others. The principles of
Kohonen nets have been described many times43,44 and
will not be discussed here. All Kohonen net calculations
reported here used the SOM_PAK program.45

A 200 × 200 node architecture was chosen for the first
tests in order to give the 50 000 molecules enough space
to distribute. Other network dimensions were used to
investigate the effect of size on performance, and we
eventually settled for a 100 × 100 node architecture.
The nodes were arranged in a rectangular grid. The so-
called “bubble” function was used as the radial adjust-
ment function.46 The area and rate of adjustment
decrease with training cycles, but the rate of adjustment
does not depend on the distance to the matching neuron.

The projection of the drug data set onto the 100 ×
100 Kohonen map obtained from using the three de-
scriptors selected by the FIRM analysis descriptors is
shown in Figure 4. Both show the results for neural
networks. Both networks show much better separation
of drugs and nondrugs than all of our previous ap-
proaches. The drugs are well-clustered in an irregularly
shaped island, suggesting that our approach can rec-
ognize potential drugs. However, before we analyze the
performance of the net, we should investigate the
relationship between the individual descriptors and the
position of the drugs on the map.
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Direct Comparison of the Drug Molecule Dis-
tribution with the Descriptor Values. Figure 5
shows the distribution of the descriptor values within
the Kohonen map. Maximum values are depicted in red,
and minimum values are shown in magenta. The areas
with the highest drug molecule concentration are out-
lined in white. The distribution of the QsumH values
(Figure 5a) is very similar to that of the drug molecules.
Druglike molecules have values around the maximum.
This descriptor discriminates best between drugs and
nondrugs and was therefore selected by FIRM as the
first partitioning descriptor and also has a coefficient
of 0.28 in the MEP+ PC.

The distribution for the ESPmin values is shown in
Figure 5b. The minimum values for this descriptor

appear close to one end of the drug molecule cluster and
the maximum close to the other. As will be shown below,
this behavior corresponds to an additional selection
within the drug data set.

The distribution for the third descriptor (covHBac) is
shown in Figure 5c. The distribution is similar to that
found for QsumH but shifted upward in the diagram.
The drug cluster lies parallel and close to the area of
maximum values for this descriptor.

Thus, two of the descriptors, QsumH and covHBac,
are very similarly distributed to the drug cluster and a
combination of the two can clearly define the position
of the cluster fairly well. The third descriptor, ESPmin,
provides some discrimination within the cluster that we
had not expected (see below).

Quantitative Analysis. Figure 6 shows a contour
plot of the numbers of molecules from the drug data set
per neuron. The data have been smoothed using a

Figure 4. 100 × 100 Kohonen network trained with the three
FIRM-selected descriptors (black, drugs; gray, nondrugs). The
training parameters were as follows: number of iterations for
the first training run, 10 000; starting adjustment value (R)
for the first training run, 0.03; starting adjustment radius for
the first training run, 200; number of iterations for the second
training run, 100 000; starting adjustment value (R) for the
second training run, 0.01; and starting adjustment radius for
the second training run, 40.

Figure 5. Color-coded (red, minimum; magenta, maximum) Kohonen maps of the values of the three descriptors selected by the
FIRM analysis: (a) QsumH, (b) Espmin, and (c) covHBac. The contours shown correspond to those given in Figure 6.

Figure 6. Contour plot of the occurrence of the drug molecules
within the Kohonen map. The data have been smoothed as
described in the text. The contours correspond to 0.2 (red), 0.67
(green), and 0.8 drugs per node (blue). The red contour
corresponds to the value expected for a uniform distribution
of the drugs over all of the nodes.
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simple linear distance-dependent function extending out
to the fourth nearest neighbors. The lowest contour level
shown corresponds to a smoothed occupancy of 0.2 drugs
per node, the value expected for a uniform distribution
of the molecules over the 10 000 bins. Thus, the area
within the red contour is that in which the drugs are
proportionally overrepresented.

The drugs are found in 20% of the neurons, suggesting
that the Kohonen map provides a practical and useful
tool for identifying drug candidates. Before assessing
the performance of this technique, however, we will
discuss the occurrence of different types of drug within
the map and whether we can actually identify the best
areas for different applications or targets.

Which Drugs Are Where? To investigate possible
partitioning within the drug data set, the drugs were
classified into 10 different classes according to their
application. The distribution of each class within the
Kohonen map was then plotted. Interestingly, the
different classes of drugs are somewhat discriminated
by the ESPmin descriptor. Antiinfectives, central ner-
vous system (CNS) drugs, antiallergics, cardiants, and
bronchial drugs are concentrated within the 0.2 molecule/
node contour found for the total drug set but at the end
of the distribution close to the minimum values of
ESPmin. Immunomodulants, enzyme-inhibitors/enhan-
cers, and digestion-related drugs are, if at all, only very
loosely clustered. Gratifyingly, dermatics (a classifica-
tion that was accidentally not excluded in our drug se-
lection procedure) are also fairly evenly distributed over
the map. However, the hormones are concentrated at
the opposite end of the total drug cluster (that with
average values of ESPmin adjacent to the ESPmin max-
imum) to the majority of drugs. We therefore separated
the hormones (252 compounds) from the remainder of
our data set and plotted separate contour plots for the
two data sets. The results are shown in Figure 7.

The two plots show that by separating the predomi-
nantly steroidal (151 of 268 compounds in the hormone

data set are steroids) hormones from the remaining
drugs, we can not only identify hormonelike compounds
but also use a significantly smaller cluster for the
remaining drug compounds. We have therefore set up
two binning schemes in order to allocate a drug-likeness
score in four levels.

Drug-Likeness Classification. We have divided the
frequency with which drugs are found in a given bin in
the above smoothed Kohonen maps into three ranges
based on the frequency and plotted the results for the
hormones and the drugs-hormones data sets in Figure
8.

The red area (class C) indicates only that at least one
member of the data set was assigned to this node and
is therefore only a very weak indication that such a
compound may be suitable as a drug. The green (class
B) and blue (class A) areas indicate a far higher
concentration of drugs and are therefore a strong
indication that the compound has the correct physical
properties. For the drug data set, there are 389 class B
nodes and 143 class A nodes. The two highest classes
together therefore account for 5.3% (3.9 and 1.4%,
respectively) of the 10 000 available nodes. The corre-
sponding data for the hormone data set are 80 class B
and 49 class A nodes (0.8 and 0.5% of the total number
of nodes, respectively). Nodes in which no drugs appear
are assigned to class D.

Analysis of the Performance of the Models for
the Data Sets. Figure 9 shows a histogram of the
percent frequency of the occurrence in classes A-D of
the molecules in the Maybridge and total drugs data
sets (the numerical data are shown in Table 5 in the
Supporting Information). The distinction between the
two data sets is impressive. The ratios drugs:nondrugs
for classes A-D are 17.7:1, 4.9:1, 1.7:1, and 0.2:1,
respectively. This selection is mainly caused by a very
sharp falloff in the proportion of Maybridge molecules
in the druglike classes. Only 1.7% of the Maybridge
molecules, for instance, are found in class A. However,

Figure 7. Smoothed contour plots for (a) the 252 hormones from the drugs data set and (b) the remaining compounds.

3352 Journal of Medicinal Chemistry, 2002, Vol. 45, No. 16 Brüstle et al.



the simple numerical index, ∆, also provides a useful
distinction between the two data sets. The mean ∆ for
the Maybridge data set is -1.15, with a standard de-
viation of 1.54, whereas the corresponding values for
the drugs data set are +0.62 and 1.56. Thus, the widths
of the two distributions are very similar, as shown in
Figure 3, but the maxima are shifted relative to each
other.

We also processed a large subset (42 131 compounds)
of the WDI selected using a size limit of 150 atoms and
projected these onto the Kohnen map obtained by the
above procedure. The resulting distribution is shown in
Figure 10. The large data set clusters were remarkably
similar to the selected drug data set, as also shown in
Table 5 (Supporting Information). The results suggest
that the large data set, which we will call WDI for
simplicity, is significantly more druglike than May-

bridge (73.5% of the compounds are found in classes
A-C) but less so than our small selected drug data set.
This conclusion is significant because the drug data set
was combined with Maybridge to train the Kohonen net,
although the distinction between the two data sets was
used to select the descriptors. The ratios of the fre-
quency of occurrence of the drug data set as compared
to WDI in classes A-D are 1.4:1, 1:1, 1:1, and 1:1.6,
respectively. The corresponding ratios between May-
bridge and WDI are 1:12.8, 1:4.9, 1:1.6, and 3:1. Thus,
the drug data set is enriched in class A and poorer in
class D compounds than the unselected WDI data set.
The frequencies of occurrence of class B and C com-
pounds are very similar in the two data sets. This result
is both consistent with our expectations and a useful
validation of the techniques used. We should perhaps
note here that there are many nondrugs in the WDI
data set.

Summary and Conclusions

The techniques investigated here provide considerable
new information about the relationship between de-
scriptors and physical properties as well as how drugs
can be distinguished from nondrugs. The assignment

Figure 8. Map of the binning used to classify compounds
according to the neuron to which they are assigned in the
trained Kohonen net.

Figure 9. Performance of the Kohonen map-based classifica-
tion scheme for the Maybridge and drug data sets.

Figure 10. Distribution of the 42 131 compounds with 150
atoms or less taken from the WDI on the Kohonen map
obtained for the Maybridge data set.
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of the PCs of the 26 descriptor set to the individual
factors shape/size, MEP+, MEP-, H bond donor, H bond
acceptor, dipolar polarity, and chemical diversity de-
scriptors (in order of decreasing importance) provides
a simple and instinctive framework for further QSPR
work.

The fact that only one of these descriptors, MEP-, is
able to discriminate between drugs and nondrugs is
particularly interesting. The simple drug-likeness index,
∆, defined in eq 1, provides a simple, one-dimensional
estimate of the suitability of a given compound as an
oral drug. Its performance is comparable with many of
the methods described in the literature.

The Kohonen map, trained using only three descrip-
tors identified by recursive partitioning, provides more
information and is even able to discriminate, for in-
stance, between hormones and other drugs. The neuron
to which a given compound is assigned allows a qualita-
tive classification of the compound as a potential drug
or not. It is both remarkable and gratifying (from our
point of view) that the classical 2D descriptors included
in the full 66 descriptor set, such as the counts of
hydrogen bond donors and acceptors, apparently do not
have the resolution to distinguish as well as the three
quantum mechanically derived descriptors QsumH,
ESPmin, and covHBac. This is perhaps surprising as
the three descriptors used are clearly connected to the
hydrogen-bonding properties of the molecule. They do
not, however, correlate strongly with their 2D equiva-
lents.

Above all, however, the fact that our Kohonen map-
based classification does not depend on the definition
of a nondrug data set encourages us to believe that the
techniques described here can form the basis for an
objective and routine screening of drug candidates.
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(41) Brüstle, M. M. Sc. Thesis, Universität Erlangen-Nürnberg, 2000.
(42) Hawkins, D. M. FIRM, http://www.stat.umn.edu/users/FIRM/

index.html.
(43) Zupan, J.; Gasteiger, J. Neural Networks for Chemists, An

Introduction; VCH: Weinheim, 1993.
(44) Kohonen, T. Self-Organization and Associative Memory, 3rd ed.;

Springer-Verlag: Berlin, 1989.
(45) Kohonen, T.; Hynninen, J.; Kangas, J.; Laaksonen, J. SOM PAK:

The Self-Organizing Map Program Package; Technical Report
A31; Helsinki University of Technology, Laboratory of Computer
and Information Science: FIN-02150 Espoo, Finland, 1996.

(46) Honkela, T. Comparisons of Self-Organized Word Category Maps,
Proceedings of WSOM ‘97, Workshop on Self-Organizing Maps,
Espoo, Finland, 1997; http://citeseer.nj.nec.com/427658.html.

JM011027B

Descriptors, Physical Properties, and Drug-Likeness Journal of Medicinal Chemistry, 2002, Vol. 45, No. 16 3355


